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In this paper we study the spectroscopic details of the radiation emitted by electrons propagating at
relativistic velocities in undulators, whose on-axis field consists of the usual periodic term plus a contri-
bution at a given harmonic. We present a fully analytic study and show that the undulator brightness
can be written in a closed form using a new class of Bessel functions, which allows a clear understanding
of the harmonic selection mechanisms pattern. We compare the analytic results with a fully numerical
procedure and prove the equivalence of the two methods. We also discuss the relevance of the obtained
results within the context of free-electron laser (FEL) physics.

PACS number(s): 41.60.Cr, 41.85.Lc, 52.75.Ms, 07.77.+p

I. INTRODUCTION

In recent years nonconventional undulator con-
figurations have been suggested, for various purposes,
within the framework of free-electron laser (FEL) studies.
Iracane and Bamas [1] have proposed the two-frequency
undulator (TFU) as a device generating a laser field hav-
ing both a larger extraction efficiency and a narrow spec-
trum. Furthermore, Schmitt and Elliott [2] conceived
the two-harmonic undulator (THU) to enhance the gen-
eration of higher harmonics. More recently the authors
of Ref. [3] reconsidered the THU scheme, presented a
preliminary analysis of its spectral properties, and calcu-
lated the gain of a FEL operating with such an undulator
device.

In this paper we develop a detailed analysis of the
THU spectroscopy presenting an efficient algorithm of
computation. The method we propose is based on the use
of four-variable Bessel-type functions, which are a further
generalization of a new class of Bessel functions (BF) [4]
successfully exploited in previous analyses of the undula-
tor radiation properties [S]. Since the use of these func-
tions is crucial for the understanding of the THU spectral
features, we devote the next section to a brief survey of
their properties. In Sec. III we present the analytical
derivation of the THU brightness. The reliability of the
obtained results is checked in Sec. IV, where they are
confronted with those from a fully numerical procedure.
Finally, Sec. V contains concluding remarks, comparison
with the TFU physics, and some considerations on the
use of THU for FEL developments.

II. A BRIEF SURVEY ON THE PROPERTIES
OF GENERALIZED BESSEL FUNCTIONS

Two-variable generalized BF (GBF) of the type
(mJ.(x,y) have been defined in Ref. [4] in terms of the
infinite series

+ o
W)= T, (),
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where J,, () are cylinder, ordinary, first-kind BF. It can be
easily proven that ™J, (x,y) satisfies the recurrence rela-
tions

%("’)Jn(x’y):%[(m)']n Al(x’y)a(m)']n +1(x’y)] ’

aiiv(m)']n(x’y):%[(mvn—m(x’y)—(m)']n+m(x’y)] ,

2n'™J (x,y)=x [T, _ 10, 3)+ "I (x,0)]
+m.V[(m)Jn—m(x’y)+(M)Jn +m(x7y)] s

(2.2)

and it can be defined through the generating function
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Furthermore, setting t =e'? in the above equation one ob-
tains the generalized Jacobi-Anger expansion,

+ oo X .
b o ind (m)Jn(x’y)Zexp{i[x sinf+y sin(m6)]} ,

n=—o
(2.4)
and thus integral representation,
‘"”J,,<x,y)=i J7d® cos[n®—x sind—y sin(m®)] .
T Jo
(2.5)

Finally it is worth stressing the following elementary
properties:

tmy (x,0)=J,(x) ,

N
My (0,y)= Jumy), if ;theger

n

(2.6a)
0, otherwise ,

and
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MI(—x,—p)=""J_ (x,y) . (2.6b)

Together with the above GBF the further generalized
forms can be introduced,

+ o0
E:lr))‘]n(x’y ;uyv): 2 (S)Jn ‘ml(x,y)")J,(u,v) .

I=—c

2.7
|

(a) the recurrence properties of ("”Jn (x,y;u,v) are

2, (e, u,0) =4[

1
2

)Jn_l(x,y;u,v)—(’")J,l(x,y;u,v)] ,
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Since, for the applications we have in mind, s =r =2 is
enough, we will restrict the analysis to the study of the
properties of the function {3}/, (x,y;u,v) and to avoid
heavy notations we will suppress the subindex (2,2). It is
not difficult to realize that

(2.8)

ox

3 My (x,y;u,0)=L["0T _(x,y;u,0)—"T (x,y;u,v)]

ay n\NVy )y s %, 2 n—2\VsJy s 4%, n+2\N ) Uy »
S.u— (M)Jn(x’y;u’v)z%[(m)‘,n*m(xny;uyv)_(m)']n +m(xry;u’v)] s
3

Ay a6y u ) =5 g (6 p 5 0) = g (x5 0,0)]

20T, (x,y 5u,0)=x [T, _ 1%,y 5u,0)+ "0, Gy 5u,0) 1420 [, 00y 5u,0) ", ok, p 5u,0) ]

+m{u["™T, _ (x,y;u,0)+ ", Gy su,0) 20 [, 0 (6,3 5u,0)+ T, o (X, 5u,0)])

(b) its generating function is

+ o0
3> "ML (x,y5u,0)

n=—oo
— X 1 y 2 1 u 1
= —lt—= |+ [t°—= — |[t"——
exp > ; ) t 2 + 2 t o
_*_E 2m___1_ .
2 t “2m ; (2.9)
(c) the corresponding Jacobi-Anger expansion reads
+ X
2 em@ ("‘)J,,(x,y;u;v)
n=—o0
=exp{i[x sinf+y sin(26)
+u sin(m0)+vsin(2mo)]} ; (2.10)

and (d) the relevant integral representation is written as

(’”)Jn(x,y;u,v)
1 -
=— | dod ® —x sin® —y sin(2P
ﬂfo cos[n X sin y sin(2P)

—u sin(m®)—vsin2Cm®)] . (2.11)

In addition the following properties will be of particular
usefulness:

my (x,0;u,0)=""J (x,u) ,

(m) (2.12a)
(m)Jn(O,y;O,U): "y (y,0) , B even
0, otherwise ,
and
(=%, =y —u, —0)=""T_(x,p;u,0) . (2.12b)

Numerical codes have been developed for the evaluation
of the above discussed functions. These codes are based
on either the series expansion or the integral representa-

[
tion. Both predictions are reliable and exhibit an unessen-
tial loss of precision near the zero. The precision of the
codes is up to the fourteenth digit and up to the sixth di-
git near the zeros. In the next section we will show that
the function ™J (x,y;u,v) plays a central role in the
study of the THU brightness.

III. ANALYSIS OF THU BRIGHTNESS

The harmonic undulator has a modified magnetic field
provided by the following sum of sinusoidal forms [3]:

N
B= 3 B,sin(k,z) .
n=1
Albeit the problem of calculating the brightness from
such a field can be solved under general conditions, here,
for the sake of simplicity, assume that the field is com-
posed by two harmonic linearly polarized fields only,
namely

(3.1

B=(0,B, sin(k,z)+ B, sin(hk,z),0) , (3.2)
where A is an integer and
21
— <7 33
k, T (3.3)

u

with A, being the undulator period.

A relativistic electron, moving in such a field, under-
goes the Lorentz force and its motion will be specified by
the following reduced velocities and trajectory:

B=(B,,0,8,),
B, ~—-“[K, cos(w,1)+K, cos(ha, )] ,
4 (3.4)
B, ~ 1—2—17/2-[1+K%cosz(wut)+K,,zcos2(ha)ut)
+2K K, cos(w,t)cos(hw,t)] [ ,

and
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r=(x(1),0,z()),
K
x(t)=— [Kl sin(wut)+—hi sin(ho,t) | ,
u (3.5)
(z)=ﬁ*ct—Lﬁﬂ L in[w,(1—h)t]+ —L— sin[o, (1+h)]
z 27? o, |(—h) u (1+h) “
4 2 . K}% .
— K1sin(2w,t)+——sin(2hw,t) | ,
872w, h
ﬁ*=1—5;—2[1+%(1<%+1<,3)] :
r
where within the present approximation, can be written
o = 21mc _ eB,A, _ eB, A, (3.6) nE(‘I/COSCD,\I/Sin(I’,I—%\I’Z) . (3.8)
u ’ 1 2 h 2 .
A, 2mrmge 2rmgcth

The above equations have been derived expanding all the
dynamical variables up to the order y ~2.

We have all the elements to evaluate the brightness,
which will be derived from the radiation integral [6]

Recall that W is of the order of 1/y.

Let us now proceed step by step and find a manageable
expression for the various quantities appearing in the in-
tegral (3.7).

(a) Cross products:

di 1
70 dQ [nX(nXB)], =¥ cosd+ 7[K1 cos(w, t)
L, g +K,cos(hw,t)]
+ . nr
= i“z’ J "nx(nXBexp [zw lt——;— ]dt » [aX(nXB)],=¥sin® (3.9)
e |¥ =
1
(3.7) [nX(nXpB)], =~ —\112—7\[/ cos®[K, cos(w, )
where n is the unit observation vector (see Fig. 1) and, +K, cos(hw,t)] ;
J
(b) dot products:
c W cos® . LY Ky
r~——2" K _n * — 12— 2 o "
n-r oy  sin(w, 1)+ 7 sin(hw,t) | +B*ct (1—1¥?) 8%, Kisin(2w,t)+ P sin(2ho,t)
¢ ek sinfw,(1—h)t] sin[e,(1+h)] ) 5.10)
29%, " (1—h) (1+h) ’ :
and (c) evaluation of the exponential:
. Ki+K} i
exp |iw — 2L ~exp l_a% 1+—1—h+72\112 exp iMKlsin(wut)+i s sin(2w,, 1)
2 2 o, 8y%w,
oV cos®K, Kiw
ti—F————sin(hw,t)+i———sin(2ho,t)
ho,y 8v*hw,
KK KK
) £y ) 18y
Xexp |i sinfw,(1—h)t]+i 1+h)]| . 3.11
P 27250,, (l_h) [wu ] 12,}/2&)" (1+h) Sln[wu( ) ] ( )
‘According to the formalism developed in Sec. II we can immediately take advantage from the GBF and write
. K}+K}
exp |iw t—%’ ~exp _co_t2 1+;h+72\1/2”
+oo K Klo K K}
X 3 explino,t) ™, |Wcos®— -2, — — ;Wcosd— |2 | O
o Y o, 8%, Yy |ho, | 8y? | ho,
; K, K KK
iw 1Ky ® 1Ky
X 1—h)t]+i—— . .
exp %0, (1—h) sin[w, ( )t] 1272(1)“ E s1n[a)u(1+h)t]] (3.12)



48 SPECTRAL PROPERTIES OF TWO-HARMONIC UNDULATOR . .. 3033

The problem is now that of manipulating the last exponential to get a more convenient form. Using the usual expansion
formulas we find

(1—nh) + (1+h)

j infw,(1—h)t infw,(1+h)
expl ,g, KK, sin[w ]  sin[e ] ] l
2y‘w,

= 5 explifo,1—mn, | —2K K S otige, 1+ med, |—2KKs (3.13)
P “ T 2v%0,00—n) | =, . ¢ | 2y%0,(1+h) '
Introducing the indices
s=f+g, v=g—f, (3.14)
Eq. (3.13) can be rearranged as
T T2 is+hve [0 KK, 0] KK,
J _ —_— —_— (3.15)
v_}:,w S_E_w (s—=v)/2 2’}’20)“ (1—h) (s +v)/2 27/2‘0“ (14h)
thus getting, in conclusion,
Ki+K}
lw 1 h )
t——— | | = — 1+ ———+y°¥
exp |w exp 2 1 > v
X 3 e mwu‘u.)‘,( n L)n; (h) _ glh)
n=-—oo
1 —ils+hvio,t
> 2 Jis—nr( =85 Ny —E55") (3.16)
§=—o0 Y=—o
with the various arguments being specified by
K K} K
§L,”=\I/cos<l>—li, L})=_‘12£" §i,h)=\llcos<l)-——h— hw
Y @, 8'}’ (2 Y @,
(3.17)
2
é—(h)=l<.h_ () g(—,hx=ﬁﬂ @ §(+,h)=_£1_{(L I
@ 8';/2 ho, @ (1—nh) 2}/260“ (1+h) 21/20)“

The problem of finding an expression for the THU brightness has been therefore solved. Performing the integration on
the time we find [the superscript (1,4) indicates the brightness of an undulator having the on-axis field provided by

(3.2)]
} exp [i‘rrN l

2

L o (n+s+hv) L o (n+s+hv)

dod)

b

dZI(l,h) e—Z
c

l——zzz( n,s,v? nSV’SIfS’V)Sinc [‘n.N

(1 @
(3.18)
where sinc(x)=(sinx)/x, N is the number of undulator periods,
2
;= 2 o, (3.19)
Ki1+K;
1+ ————+y2¥?
2
and
x = (h) K, (h) (h)
S sv=¥(cos®) JnJ(s—v)/ZJ(s+v)/2+?,}—;J(s—-v)/2'](s+v)/2[ o1 " 41
+‘7(h)-’ is—v=0129 s+ -2 s =+ 0129 s + v 121
Snsv_\l’(sulq))(h)" J(s——v /2Js+v)/2 ’ (3.20)
K,
Sasv= _wz(h)Jn‘I(s—v)/ZJ(s+v)/2—;\p(cosq))',(s—v)/l"(s+v)/2[(h)‘]n—1+(h)Jn+1]

K,
- _27‘1’(COS¢)(h)Jn[J[s —v=12 s+ =12 T s~ 0127 s v+ 0121 -
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The arguments of the BF have been omitted for conmseness
It is worth stressing that the contribution of (S, . ,)? can be neglected, being of the order 1/y*. As to radiation emit-
ted in the forward direction(W =0), the only active component is (S} , ), which reduces to

n,s,v
dZI(l,h) e2 (— (+.h)
= 222 J( I (e 2 (—ESTM)
dwd) ¥=0 C w, ns v s sTv @
X [P (1) 2 (—EL, —E) T (1) 2 (—EY, —EU)]
K, _
+E(h)Jn/Z(_g(wl)’—é—gl))[‘][s—(v—l)]/Z(—gfo Ry

XJ (s +(v— x)/z §(+h))+-]s—(v+1)]/2( gw )J[S+V+1)/2(_ +h))]]

o

. (3.21
Assuming that each harmonic is narrow enough that » appearing in the argument of the GBF can be replaced with
(n +s +hv)w, we have

L (n+s+hv)
(23}

L o (n+s+hv)
(2]

Xsinc {TN

2
27(1,h) K
d ’ E_N2y2 21 -
dodQ |vy—0 ¢ K2+K}
1+
2
Wis =02 (8 7MW 4oy px IBT ) (xVERY B (6D, €M)
Ky (h) (1) g(h) (—,h) (+,h)
+K—1 w8 E NI (s —(v—1012(8 W 54 (v—1)12(E ")
=012 E W 12 (ETT
2
Xsinc {7N wﬂ—(n-l—s-%hv ]exp’sz ——(n+s+hv) } ,  (3.22)
1
N I
whnere dZI(l,O) =_6_2_N27/2 K 2
() Ki 1 dodQ Jv=0 ¢ H—K2
=—(n+s+hy)——m7——, 5
5 4 K?+K} 2
2 n+1)2(8)]
KZ
EW=—(n+s+hv) (3.23) _
4 Ki+K; Xsinc |7N |2 —n
2 1
2
KK 1 -
(EW = _(pn +5s+h 1A ] Xexp |imN |— —n , (3.24)
£ R TE Y @
=

It is easy to realize, just inspecting Eq. (3.22) that the
various combinations of the integers (n +s +hv) allows
the emission on further peak not present in the conven-
tional undulator brightness.

It is now worth comparing Eq. (3.22) with the on-axis
radiated brightness in the linearly polarized undulator. In
that case we get

FIG. 1. Observation frame.
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TABLE 1. Allowed combinations of quantum numbers that
correspond to the on-axis harmonic number.

(n+s+hv)

n s v h even h odd
even even odd even odd
even odd even odd odd
odd even even odd odd
odd odd odd even odd

with
2 2
o=—= o  g=—pf 1 (3.25)
1+ K—2 4 1+ —Iﬁ
2 2

Some analogies between the two emission process exist,
but the more complicated and richer spectroscopic con-
tent of the THU case is evident. This point will be quan-
titatively explored in the next section.

8x10-25
(a) h=2
6X10-25 |-
5
- -
W 4x1025 |
9
s
5 -
s
[
2x10-25 -
LA dea dln
0 2x1014 4x10'4 6x1014 8x1014
Frequency (Hz)
6X10-25
h=3
(b)
5X10-25 |
Taxioss b
"
“» 3x10-25 -
g
£
=
2 25
S 2x1025 -
1x10-25 - A\
L.._.MJL " A R .
0 2x1014 4x1014 6x1014 8x1014
Frequency (Hz)

FIG. 2. (a) First nine harmonics, A =2, y=50, A,=6 cm,
N=10, K}+K?=2, y=®=0, K,=1.34; (b) First nine har-
monics, 2 =3, same parameters of Fig. (a).
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IV. NUMERICAL ANALYSIS

Before commenting on the results of the numerical
analysis, let us explore more deeply the physics content of
Eq. (3.22) and discuss what we do expect. The THU
brightness will be in general characterized by three
discrete numbers (n,s,v), which specify the harmonics lo-
cation.

From Eq. (3.22) and from the properties of the GBF it

1.2x10-25

1.0x10-25 +

0.8x10-25 -

0.6x10-25 -

Brightness (erg s/sr)

0.4x10-25 |

0.2X10-25 |-

0 5.4x10'4 5.5x1014

Frequency (Hz)

5.6x1014

0.6x10-25

0.5x10-25 -

0.4x10-25 |

0.3x10-25 |

Brightness (erg s/sr)

0.2x10-25 |-

0.1x10-25

T

0 TN \ , A

6.1x1014 6.2x10'4 6.3x1014 6.4x1014
Frequency (Hz)

FIG. 3. (a) Seventh harmonic, h =3. The dashed line
(— — —) denotes evaluation with GBF method —36 <n <36,
—36<5<36, —12<v=<12 condition (n+s+hv)=7. The
solid line ( ) denotes evaluation with the numerical method.
(b) Eighth harmonic, # =2. The dashed line (— — —) denotes
evaluation with GBF method —36<n <36, —36=<s <36,
—12<v=<12 condition (n +s +hv)=8. The solid line ( )
denotes evaluation with the numerical method.
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is possible to extract the combinations of quantum num-
ber which correspond to the on-axis harmonics number.
The allowed combinations are given in Table I. Let us
assume that the sum (n +s +#Av) describes the number of
the harmonics. The first observation from the Table is
that for 4 even the harmonics worth even number are al-
lowed. For 4 odd the even number harmonics are forbid-
den as in the case of one frequency undulator. These con-
clusions are confirmed by the fully numerical calculation
of the THU brightness. The on-axis emission with a fre-
quency interval of the first eight harmonics are given in
Fig. 2 for h =2 and 3.

The adopted numerical method has been described in
Ref. [7]; it consists of a numerical integration of the elec-
tron trajectory using an initial value method and in the
evaluation of the Lienard-Wiechert integral using an
adoptive algorithm.

The agreement between the results obtained by the nu-
merical method and those of the analytical computation
using (3.21) in very good. For n&[—36,36],
s€[—36,36], and v€[ —12,12] the coincidence is up to
the sixth digit in the large neighborhood of the peaks.

The approximation done by the assumption that.the
sum (n +s +hv) corresponds to the peak number is de-
picted by the Fig. 3. The dotted line presents the results
of the brightness calculation for the seventh and eighth

2.5x10-24
a2=0.1819
2.0x10-24
B
= 1.5x1024 |
<
2
2
8
c
=
2 1.0x10-24 -
[}
0.5x10-24 |-
\m . MW\ . ML
[ 2x1014 ax1014 6x1014 8x1014

Frequency (Hz)

FIG. 4. Two frequency undulator spectrum. Parameters:
AP=5 cm, A¥=5.155 cm, L,=166.7 cm, y=54.772, a, =1,
a,=0.1819.

sinflw,(1—h)t] sin[w
1—h

L(1+h)e] H

io
1o gk
“p[zyzw 184 1+h

u

harmonics region where from the sums only the combina- to . K.K K.K
. . . . ibw, t [n] 1Hh w 1584
tions for which (n +s +hv) is equal to the given harmon- = > e “J > y TS
ic number are extracted. One can see that the above ap- b=—w 27’0, (1=h)" 27%, (1+h)
proximation is good for the peak frequencies and accept- 4.2)
able for the nearest regions. where
The obtained results may become perhaps more clear, K.K
going back to Eq. (3.15) and setting Js(s E Tib—(h+1w]/ L#
—— 2y%0, (1—h)
s=b—hv, 4.1) K.K
X J e 4.3)
[b—(h—1w]/2 ) .
then Y 292, (1+h)
J
thus getting
. - Ki+Kj
exp |iw t—llc—r ] =exp ;_;n; +%+72\I’2] ’
o, T —ibw t _
X 2 —in )J” é— g(l) h),—ggl)) 2 ! mu]-b(é‘fu ,h),§;+,h)) . (4.4)
n=—o0 b=—o
Let us now introduce the GBF ”’)R by
T —inw,t —ibw, t gl —imo,t —
S ey, S =S IR, (— gL — 1), — £, — ;g glrom) (4.52)
n=—o0 b=—o m=—o0
where
+ o
WR,= 3 WJ, i, . (4.5b)
b=—w

The function "R,
assume that 4 is odd, we can set

2r+1) L e
r — r :
Rm— 2 Jm~2q]—2q ’

g=—oo

and write Eq. (3.22) in the simpler form,

can be viewed as a discrete convolution of the GBF "J,, on the function j_,.

Furthermore, if we

4.6)
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d ZI( 1,2r+1)
dod =0
w 252
= e’ N2 +2 m°Kj
¢ m=—o K2+K?
1+ 3

K
(2r+1) (2r+1) ho2r+1) (2r+1) 2
X" VRim—y ' R(m+1)/2+K CT" R —2r+112 7+ "R+ 2r+1122)}
1

2

X |sinc [N

|

The arguments of the R functions are

(_mg(l)’ _mg(h);mg(*,h)’m§(+,h)) .

(4.8)

The above expression is more concise, and, perhaps, Eq.
(3.22) is more physically pregnant.

V. CONCLUDING REMARKS

Before further analyzing the properties of THU radia-
tion let us discuss their link with those of TFU bright-
ness.

A TFU is an undulator whose on-axis field consists of
two sinusoidal forms having slightly different periods.
The fact that in the THU case one period is an integer

o2
=— (0T)?
v=0 4i°C

d*1
dodQ

ElzzzBl,r,m,s

r ms

q)l,r,m,sT

where we have defined

_ o K*? () 2)
D ms =5 |1+ —(lo)+rA _+mo,+sAL),
»rh,m, 2,}/ 2
0=k D | A =eN+e? | T= Lcu ’
(5.3)
K
BI,r,m,s=§[al(J1+l,r,m,s+J1-—l,r,m,s
+?02(J1,r,m+l,s +Jl,r,m—1,s)] ’

7\,(2) eB }\'(1)
F=—tr, K=———"=, K**=KXa}+7%}).

Ay 2mmgyc
The function J , ,, ; is finally specified by
Tirms =10 EG V(AT fp(EFNT (AT, (5.4)

whose arguments are

sin(®, ., T)

4.7)

[
multiple of the other is a significant simplification. As a
consequence, at least from the mathematical point of
view, the spectral properties of THU are a particular case
of those of TFU.

The on-axis magnetic field of a TFU is taken of the
form [1)]

B=B,[0,b(z),0]

b(z)=a, sin(kVz)+a, sin(k?z) , klﬂ"’=12(i:7 ,
u
a=1,2 (5.1)
and the relevant on-axis brightness reads
2 2
1—cos(®P, T
+|Z3Z33Bims g 1 , (5.2)
I r ms Lr,m,s
[
b o 4K’ (2)___w_’r“3a§K2
o mg‘l) 8y? » b6 ol 8y2 '
47%a,a, g2
A(+)= o T 7172 KT (5.5)
2] ~ ’ .
ol (1+7) 8y2
47%a,a K2
AL}*)=+L 172

o' (1—7) 8y2

It is not difficult to realize that the indices of the summa-
tions and the BF can be rearranged to obtain the results
of the previous section if A{’/A{?) is an integer. In the
general TFU case the four indices /,7,m,s cannot be com-
bined to characterize the harmonics with a single integer
only. The difference between TFU and THU brightness
can be understood inspecting Fig. 4. The much richer
harmonic content of the former case is easily recognized;
the reader interested in further details is addressed to
Ref. [7].

After this digression we come back to the THU physics
and discuss what we should expect if a two-harmonic de-
vice is used to generate FEL radiation. A direct applica-
tion of the Madey’s theorem yields an mth harmonic
gain,
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FIG. 5. (a) [JJ],, factor vs Ko =K /V'2; (b) F factor vs K3=(K}+K}?)/2, h =2, K,=K /h; (c) same as (b) # =3; (d) same as (b)
h =4; (e) same as (b) & =5; (f) same as (b) A =7; (g) same as (b) 2 =9; (h) same as (b) h =4.5; (i) same as (b) 1 =6.5.
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where v,, =27N(mw,;—wo)/w, is the detuning parameter
and g0 the small signal gain coefficient; namely,

0=41T )"mL_I_ -2

&m vy 2 Iy "

Ao
(0]

0

XFm(é'(l),é‘(h),é‘(—’h),é‘H"h)) , (5.7)

with I and I, being the e beam and Alfvén current, re-
spectively, F,, the filling factor, 2 the e-beam cross sec-
tion, (Aw/w)y,=1/2N the homogeneous bandwidth, and
finally

3039
Fm(é-(l)’g(h),é-(*,h)’é—(+,h))
=§(I)m2 (2r+1)R(m~1)/2+(2r+1)R(m+1)/2
Ky
+—K [P "R —2r+ 112
1
2
2
+P IR v @rn12] |- (5.8)

The above function provides the coupling term to the
mth harmonic and a comparison with the usual [JJ] term
is shown in Fig. 5.

The figures display the behavior of F, vs
Ko,=[(K2+K})"?/2]. The various plots are given for
different values of K, and thus for different ratios
K, /K,, which has been assumed to be an integer in Figs.
5(a)-5(g). The figures seem to suggest that when 4 in-
creases, the coupling to higher harmonics may be
favored. In the case of # =5 the third harmonic has a
larger coupling than the first. In the case of 2 =9 there is
a substantial enhancement of the seventh harmonic.
When £ is not an integer [see Figs. 5(h) and 5(i)] there is
no substantial difference between one and two frequency
undulators.

We must stress that the present analysis does not in-
clude the homogeneous broadening induced by the beta-
tron motion and by the emittances. This effect may sub-
stantially reduce the coupling to higher harmonics. This
aspect of the problem will be discussed elsewhere.
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